3.44 \(\int \frac{\cot ^3(x)}{\sqrt{a+b \cot ^2(x)}} \, dx\)

Optimal. Leaf size=52 \[ -\frac{\sqrt{a+b \cot ^2(x)}}{b}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \cot ^2(x)}}{\sqrt{a-b}}\right )}{\sqrt{a-b}} \]

[Out]

-(ArcTanh[Sqrt[a + b*Cot[x]^2]/Sqrt[a - b]]/Sqrt[a - b]) - Sqrt[a + b*Cot[x]^2]/b

________________________________________________________________________________________

Rubi [A]  time = 0.097881, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.294, Rules used = {3670, 446, 80, 63, 208} \[ -\frac{\sqrt{a+b \cot ^2(x)}}{b}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \cot ^2(x)}}{\sqrt{a-b}}\right )}{\sqrt{a-b}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[x]^3/Sqrt[a + b*Cot[x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Cot[x]^2]/Sqrt[a - b]]/Sqrt[a - b]) - Sqrt[a + b*Cot[x]^2]/b

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^3(x)}{\sqrt{a+b \cot ^2(x)}} \, dx &=-\operatorname{Subst}\left (\int \frac{x^3}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\cot (x)\right )\\ &=-\left (\frac{1}{2} \operatorname{Subst}\left (\int \frac{x}{(1+x) \sqrt{a+b x}} \, dx,x,\cot ^2(x)\right )\right )\\ &=-\frac{\sqrt{a+b \cot ^2(x)}}{b}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\cot ^2(x)\right )\\ &=-\frac{\sqrt{a+b \cot ^2(x)}}{b}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \cot ^2(x)}\right )}{b}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \cot ^2(x)}}{\sqrt{a-b}}\right )}{\sqrt{a-b}}-\frac{\sqrt{a+b \cot ^2(x)}}{b}\\ \end{align*}

Mathematica [A]  time = 0.144826, size = 52, normalized size = 1. \[ -\frac{\sqrt{a+b \cot ^2(x)}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \cot ^2(x)}}{\sqrt{a-b}}\right )}{\sqrt{a-b}}}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[x]^3/Sqrt[a + b*Cot[x]^2],x]

[Out]

-(((b*ArcTanh[Sqrt[a + b*Cot[x]^2]/Sqrt[a - b]])/Sqrt[a - b] + Sqrt[a + b*Cot[x]^2])/b)

________________________________________________________________________________________

Maple [A]  time = 0.025, size = 44, normalized size = 0.9 \begin{align*} -{\frac{1}{b}\sqrt{a+b \left ( \cot \left ( x \right ) \right ) ^{2}}}+{\arctan \left ({\sqrt{a+b \left ( \cot \left ( x \right ) \right ) ^{2}}{\frac{1}{\sqrt{-a+b}}}} \right ){\frac{1}{\sqrt{-a+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(x)^3/(a+b*cot(x)^2)^(1/2),x)

[Out]

-(a+b*cot(x)^2)^(1/2)/b+1/(-a+b)^(1/2)*arctan((a+b*cot(x)^2)^(1/2)/(-a+b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^3/(a+b*cot(x)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.60342, size = 659, normalized size = 12.67 \begin{align*} \left [\frac{\sqrt{a - b} b \log \left (-2 \,{\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (2 \, x\right )^{2} - 2 \, a^{2} + b^{2} + 2 \,{\left ({\left (a - b\right )} \cos \left (2 \, x\right )^{2} -{\left (2 \, a - b\right )} \cos \left (2 \, x\right ) + a\right )} \sqrt{a - b} \sqrt{\frac{{\left (a - b\right )} \cos \left (2 \, x\right ) - a - b}{\cos \left (2 \, x\right ) - 1}} + 4 \,{\left (a^{2} - a b\right )} \cos \left (2 \, x\right )\right ) - 4 \,{\left (a - b\right )} \sqrt{\frac{{\left (a - b\right )} \cos \left (2 \, x\right ) - a - b}{\cos \left (2 \, x\right ) - 1}}}{4 \,{\left (a b - b^{2}\right )}}, -\frac{\sqrt{-a + b} b \arctan \left (-\frac{\sqrt{-a + b} \sqrt{\frac{{\left (a - b\right )} \cos \left (2 \, x\right ) - a - b}{\cos \left (2 \, x\right ) - 1}}{\left (\cos \left (2 \, x\right ) - 1\right )}}{{\left (a - b\right )} \cos \left (2 \, x\right ) - a}\right ) + 2 \,{\left (a - b\right )} \sqrt{\frac{{\left (a - b\right )} \cos \left (2 \, x\right ) - a - b}{\cos \left (2 \, x\right ) - 1}}}{2 \,{\left (a b - b^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^3/(a+b*cot(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a - b)*b*log(-2*(a^2 - 2*a*b + b^2)*cos(2*x)^2 - 2*a^2 + b^2 + 2*((a - b)*cos(2*x)^2 - (2*a - b)*co
s(2*x) + a)*sqrt(a - b)*sqrt(((a - b)*cos(2*x) - a - b)/(cos(2*x) - 1)) + 4*(a^2 - a*b)*cos(2*x)) - 4*(a - b)*
sqrt(((a - b)*cos(2*x) - a - b)/(cos(2*x) - 1)))/(a*b - b^2), -1/2*(sqrt(-a + b)*b*arctan(-sqrt(-a + b)*sqrt((
(a - b)*cos(2*x) - a - b)/(cos(2*x) - 1))*(cos(2*x) - 1)/((a - b)*cos(2*x) - a)) + 2*(a - b)*sqrt(((a - b)*cos
(2*x) - a - b)/(cos(2*x) - 1)))/(a*b - b^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{3}{\left (x \right )}}{\sqrt{a + b \cot ^{2}{\left (x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)**3/(a+b*cot(x)**2)**(1/2),x)

[Out]

Integral(cot(x)**3/sqrt(a + b*cot(x)**2), x)

________________________________________________________________________________________

Giac [B]  time = 1.72193, size = 135, normalized size = 2.6 \begin{align*} \frac{\log \left ({\left (\sqrt{a - b} \sin \left (x\right ) - \sqrt{a \sin \left (x\right )^{2} - b \sin \left (x\right )^{2} + b}\right )}^{2}\right )}{2 \, \sqrt{a - b} \mathrm{sgn}\left (\sin \left (x\right )\right )} + \frac{2 \, \sqrt{a - b}}{{\left ({\left (\sqrt{a - b} \sin \left (x\right ) - \sqrt{a \sin \left (x\right )^{2} - b \sin \left (x\right )^{2} + b}\right )}^{2} - b\right )} \mathrm{sgn}\left (\sin \left (x\right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^3/(a+b*cot(x)^2)^(1/2),x, algorithm="giac")

[Out]

1/2*log((sqrt(a - b)*sin(x) - sqrt(a*sin(x)^2 - b*sin(x)^2 + b))^2)/(sqrt(a - b)*sgn(sin(x))) + 2*sqrt(a - b)/
(((sqrt(a - b)*sin(x) - sqrt(a*sin(x)^2 - b*sin(x)^2 + b))^2 - b)*sgn(sin(x)))